martes, 22 de septiembre de 2015

Las matemáticas en el  Renacimiento

Sin duda fue más difícil el ingreso en Europa de trabajos matemáticos que aquellas obras de literatura, filosofía o de ciencias naturales. Por ejemplo, la complejidad o dificultad de textos griegos como los de Euclides o Arquímedes hacía más difícil que se pudiera apreciar el valor de estas obras. Por eso, aun con traducciones de los clásicos ya realizadas, se requirió mucho mayor tiempo y otros trabajos adicionales para que esas obras pudieran ser apreciadas en su justa magnitud. En buena medida, los aspectos que más se tocaron fueron los más elementales de las matemáticas. Las nuevas actitudes empujaron hacia una descripción cuantitativa del universo; sin embargo, esta etapa histórica y cultural no produjo grandes logros en las matemáticas. La importante, sin embargo, estaba en las condiciones sociales y culturales y más generales que servirían como un pivote y una plataforma importante para el progreso del conocimiento, las técnicas, las matemáticas.
De la Edad Media emergió una visión sobre la realidad que incluyó la idea cristiana de un plan que integra las cosas con la figura de Dios como un arquitecto y diseñador matemático del mundo. Se trataba de una doctrina presente durante los siglos XVI y XVIII que inspiró a los científicos del Renacimiento y de la Revolución Científica, como Copérnico, Galileo, Kepler, Newton o Leibniz. Para estos intelectuales, por medio de las matemáticas se desentrañaba el diseño divino. Un elemento importante en la expansión del conocimiento y un fundamento de la ciencia moderna fue la traducción a lenguajes populares de varias obras griegas. Una traducción importante realizada en 1 543 fue hecha por Tartaglia: los Elementos de Euclides, del latín al italiano. En los siguientes años otros siguieron esta dirección, como Descartes y Galileo. Las matemáticas para progresar requerían el florecimiento de las ciencias y esto, en general, sólo podía hacerse a través de una ruptura con la autoridad. Era necesario un cambio en la metodología de la ciencia que, en particular, se desprendiera de la escolástica y de ese matrimonio acrítico con las obras griegas. En esa dirección, Leonardo da Vinci (1452 - 1519) es una de las más importantes referencias. Planteaba una actitud práctica frente a los métodos y conceptos medievales. No obstante, no estableció una metodología ni una filosofía de las ciencias plenamente. Su aproximación era más bien empírica e intuitiva. Ya volveremos a las rupturas con los métodos medievales y la construcción de una nueva metodología en las ciencias y las matemáticas. Finalmente, a manera de valoración: "En el Renacimiento las matemáticas tuvieron aplicación en la mecánica, el arte, la agrimensura, la contabilidad, la cartografía y la óptica. En general, se trataba de aplicaciones elementales o que recurrían a dimensiones de poco nivel matemático. También, en el mismo periodo, hubo interés por las obras griegas de mayor complejidad, pero no de una manera muy extendida. La ausencia de traducciones latinas de autores como Apolonio, Arquímedes, o Pappus era una debilidad.

Trigonometría
Con relación a la trigonometría debe decirse que, aunque los peritos usaban los métodos geométricos romanos, se empezó a usar algo de trigonometría plana con un método iniciado por Leonardo de Pisa en su Practica Geometriae (1 220).
Otros avances fueron hechos por el mismo George Peurbach (1423 - 1461) de Viena, quien ofreció tablas trigonométricas más precisas y corrigió algunas traducciones latinas del Almagesto que habían sido realizadas desde versiones árabes y no griegas. El más conocido, sin embargo, fue Johannes Müller (1436 - 1476), el famoso Regiomontano, que fue discípulo de Peurbach y del cardenal Bessarion (c. 1400 - 1472). Regiomontano no solo haría varias traducciones de obras griegas sino que también estableció su propia imprenta para imprimirlas. Entre ellas las Secciones Cónicas de Apolonio y partes de Arquímedes y Herón. Se sabe que en su libro De Triangulis, 1462 - 1463, Regiomontano se benefició de algunos trabajos árabes para expresar de una mejor manera el conocimiento disponible sobre trigonometría plana, geometría esférica, y trigonometría esférica.

Aritmética y álgebra

A principios del siglo XVI, el cero y los irracionales se aceptaban, más o menos en la tradición de los árabes e hindúes. Cardano, Stevin, Pacioli y el alemán Michael Stifel introdujeron nuevos tipos de irracionales. Vieta dio una aproximación del número p usando otras formas de irracionales. Stifel en su obra Aritmética Integra de 1 544 usó irracionales en forma decimal, aunque tenía sus dudas acerca de la naturaleza de los mismos, a los que no consideraba exactamente números de verdad. Las dudas sobre los irracionales siguieron por siglos. Pascal y Barrow opinaron que números como la Ö3 eran simplemente magnitudes geométricas, o sea eran símbolos sin existencia independiente más allá de esas magnitudes, y acudían a la teoría de las magnitudes de Eudoxo para justificar la operación con ellos. Stevin, por el contrario, afirmaba que los irracionales eran números independientes, e incluso los aproximó por medio de números racionales. En la misma dirección, John Wallis y Descartes llegarían a afirmar que los irracionales eran números.

Inventos de la época



Matemática en el renacimiento


https://www.youtube.com/watch?v=MCISQ5MKFmA
Matemáticos en el renacimiento


https://www.youtube.com/watch?v=_KJIy4vnTZE
RENACIMIENTO











Las matemáticas medievales


Entre los siglos XII y XV se desarrolló cierto nivel de vida matemática. Nuestra primera referencia es Leonardo de Pisa (c. 1 170 - 1 250), más conocido como Fibonacci, quien escribió en el año 1202 el famoso Liber Abaci (Libro del ábaco). En este libro introdujo los métodos de cálculo hindú con enteros y fracciones, las raíces cuadradas y cúbicas. Tanto en este libro como en el que publicó en 1 225, Liber Quadratorum, estudió el álgebra, aunque usando palabras más que símbolos y basando sus resultados en métodos aritméticos. Ofreció soluciones de ecuaciones determinadas e indeterminadas tanto para ecuaciones de primer y segundo grado como para algunas cúbicas. En su Practica Geometriae, 1 220, introduce resultados de los Elementos de Euclides y un poco de trigonometría griega. Leonardo se dio cuenta de que en el Libro X no se introducían en la clasificación de irracionales todos ellos, y que las raíces de algunas ecuaciones de tercer grado no podían ser construidas por el método de la regla y el compás.
Otra referencia importante, esta vez en las matemáticas, es Oresme (c. 1 323 - 1 382). En Algoritmus Proportionum (c. 1 360) introdujo cómputos con exponentes fraccionarios. En otros trabajos, De Uniformitate et Difformitate Intensionum y Tractatus de Latitudinibus Formarum, Oresme consideró la razón de cambio, y estableció una forma de representación que se ha llegado a afirmar como precursora de la representación en coordenadas. Ya volveremos a esto. De hecho, también, se le atribuye una contribución al concepto de función y a la representación gráfica de leyes físicas. Brunschvicg así lo apunta: "Le Tractatus de Latitudinibus Formarum (cuya influencia fue grande y duradera hasta tal punto que, desde el descubrimiento de la imprenta, cuatro ediciones se sucedieron de 1 442 a 1 515), enseña a representar las variaciones de cualquier magnitud que sea, transportando sobre una superficie plana las líneas de señal que habían sido hasta el momento trazadas sobre una esfera. Los grados del fenómeno natural se describen por la ordenada; y constituyen así lo que Oresme llama latitud de la forma; la longitud, es decir la línea de las abscisas, describe los tiempos correspondientes''. [Brunschvicg, Leon: Les etapes de la philosophie mathematique, p. 103.]Muchos historiadores opinan que la Europa medieval, a pesar de algunas actividades y tendencias culturales o cognoscitivas, difícilmente podría haber realizado por sí misma un progreso sustancial en las ciencias y las matemáticas. Contra eso conspiraban la ausencia de pensamiento libre, el control dogmático de las principales escuelas de formación (que impedía a los profesores e intelectuales la posibilidad de una enseñanza y un pensamiento crítico y científico), la represión institucional de carácter religioso cuyo signo más evidente fue la Inquisición, iniciada por el Papa Inocente III en el siglo XIII.

La Edad Media europea

Se dice que la Iglesia Católica medieval fue ambivalente hacia la ciencia y filosofía griegas. El dilema que enfrentó era cómo definir las fronteras entre la razón y la fe, y cómo integrar el conocimiento científico de la Antigüedad (pagano). Los fundadores de la iglesia católica también eran conscientes de la influencia "corrupta'' que las filosofías racionales y los sistemas místicos podían ejercer sobre la nueva religión. San Agustín en el siglo V d.C. ofreció una solución parcial a este problema. No obstante, con las consecuencias de la invasión germana y el colapso del Imperio Romano de Occidente en el siglo V, pospusieron el debate acerca del papel de la ciencia racional pagana en una sociedad cristiana por lo menos por siete siglos. Mientras la civilizaciones de los egipcios, babilonios, bizantinos, chinos y romanos florecían, la región europea, salvo por Italia y Grecia, estaba constituida por culturas muy primitivas. En los territorios de lo que había sido el Imperio Romano de Occidente, la Iglesia Católica ya había adquirido una gran relevancia política y religiosa. Los bárbaros germanos y godos fueron convertidos al Cristianismo, se establecieron monasterios que usaron algunos pedazos de la enseñanza griega y romana, pero con una orientación dirigida hacia los servicios religiosos y las sagradas escrituras. El origen de escuelas de formación superior, las universidades, se dio sobre todo como producto de las necesidades de formación en el clero. La ciencia griega, con todo y sus limitaciones, había ofrecido dos metodologías o aproximaciones en la construcción científica y matemática. Por un lado, aquella que subrayaba el papel de la deducción lógica y la reducción a primeros principios. Una visión racionalista, si se quiere. Y, por otra parte, aquella que afirmaba métodos inductivos y heurísticos, que estaban asociados a una influencia de culturas y tradiciones no occidentales, que se puede apreciar muy bien en la ciencia alejandrina. Ambas aproximaciones, sin embargo, se basaban en la razón, la mente como recurso de base. En el mundo cristiano el énfasis, durante siglos, pasó a la fe, fuera de la razón. Y esto fue un auténtico obstáculo para el progreso de las ciencias y el pensamiento en general. Debe mencionarse la contribución crítica de algunos escolásticos contra la autoridad aristotélica: Robert Grosseteste (c. 1168 - 1253) y Roger Bacon (1214 - 1294), el Doctor Mirabilis, quienes introdujeron las matemáticas y el método experimental en el territorio de la ciencia y, también, contribuyeron a la discusión sobre la naturaleza de la luz y el color. Bacon era un erudito, el cual sostenía que, además -por supuesto- de estudiar las sagradas escrituras, las matemáticas y la experiencia era importantes para el conocimiento; en su Opus Majus fue drástico: todas las ciencias requieren matemáticas.

En este escenario se potenció una visión diferente sobre la ciencia: el nominalismo, cuya figura clave fue William de Ockham o Occam (c. 1 300 - 1 349). Esta filosofía fue un instrumento importante para la redefinición de las esferas en las que debían moverse la religión y la ciencia, debate que tuvo un lugar privilegiado posteriormente en el siglo XVII. Es decir, dentro de los mismos escolásticos hubo cuestionamientos importantes con relación a la actitud dogmática y acrítica hacia el pensamiento de Aristóteles. Ockham, también, privilegiaba la experiencia por encima de las construcciones meramente racionales. Para Russell: "Al insistir en la posibilidad de estudiar la lógica y el conocimiento humano sin referencia a la metafísica y a la teología, la obra de Occam estimuló la investigación científica. Los agustinianos -decía- erraron al suponer primero las cosas ininteligibles y a los hombres ininteligentes, y añadiendo luego una luz del Infinito por medio de la cual se hacía posible el conocimiento. Coincidió en esto con Aquino, pero difirió en cuanto al acento, pues Aquino era primordialmente un teólogo y Occam era, en lo que se refiere a la lógica, primordialmente un filósofo secular.'' [Russell, Bertrand: Historia de la Filosofía Occidental, Tomo II: La Filosofía Moderna, p. 95] Sus sucesores en el Merton College, en Oxford, introdujeron razonamiento cuantitativo y física a través de la noción de movimiento acelerado. Entre tanto, en París, Jean Buridan y otros más, elaboraron el concepto de ímpetus, que sería importante en los años siguientes.

tomado de http://www.centroedumatematica.com/aruiz/libros/Historia%20y%20Filosofia/Parte3/Cap10/Parte03_10.htm